Einleitung

Im Rahmen eines durch die Arbeitsgemeinschaft industrieller Forschungsvereinigungen geförderten Forschungsvorhabens wurde an der Technischen Universität Darmstadt das Thema Anfangsgriffigkeit erneut aufgegriffen. Neben der Dokumentation derzeit praktizierter Verfahren zur Erhöhung der Anfangsgriffigkeit wurden in der Pilotstudie neue Möglichkeiten zur Entwicklung geeigneter Verfahren erörtert. Dabei war ein Schwerpunkt die Untersuchung, inwieweit hochenergetische elektromagnetische Wellen für neue Verfahren zur Erhöhung der Anfangsgriffigkeit genutzt werden können. Der Bericht zu diesem Projekt wurde im September 1997 vorgelegt.

Die nachfolgenden Ausführungen stellen die wesentlichsten Ergebnisse der Pilotstudie dar. Vorab soll jedoch darauf hingewiesen werden, daß die im zeitlich begrenzten Rahmen des Projektes durchgeführten Tastversuche lediglich dem Nachweis einer prinzipiellen Eignung dienten.

Versuchsdurchführung

Die Verfahren zum Abtragen des Bitumenüberzuges von der Gesteinsoberfläche wurden in die zwei Gruppen mechanische Verfahren und Verfahren unter Nutzung hochenergetischer elektromagnetischer Wellen unterteilt. Dazu wurden Asphaltplatten (28 x 35 x 4 cm) eines Splitmastixasphaltes 0/11 S hergestellt. Die Plattenherstellung erfolgte mit einer Bordsteinvibrationswalze (Bomag BW 75). Tabelle 1 beinhaltet die Asphaltzusammensetzung sowie Daten der Eignungsprüfung.

Mechanische Verfahren

Tabelle 1: Zusammensetzung Splitmastixasphalt 0/11 S

<table>
<thead>
<tr>
<th>Gesteinsart:</th>
<th>Diabas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineralstoffrohdichte</td>
<td>2,901 [g/cm³]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kornzusammensetzung:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Edelsplit</td>
<td>8/11 mm</td>
</tr>
<tr>
<td>5/8 mm</td>
<td>20</td>
</tr>
<tr>
<td>2/5 mm</td>
<td>5</td>
</tr>
<tr>
<td>Sand</td>
<td>0,09/2 mm</td>
</tr>
<tr>
<td>Kalksteinfüller</td>
<td>0/0,09 mm</td>
</tr>
<tr>
<td>Bindemittel</td>
<td>B 65</td>
</tr>
<tr>
<td>Stab Zusatz</td>
<td>Cellulose</td>
</tr>
<tr>
<td>Hohlraumgehalt am MPK*</td>
<td>3,2 [Vol.-%]</td>
</tr>
<tr>
<td>Raumdichte am MPK*</td>
<td>2,511 [g/cm³]</td>
</tr>
</tbody>
</table>

*: Marshall-Probekörper

Vortrag, gehalten auf den IX. Deutschen Asphalttagen 1998 in Berchtesgaden
Nutzung hochenergetischer elektromagnetischer Wellen

Ergebnisse

Mechanische Verfahren

Es hatte jedoch den Anschein, dass nach der Bearbeitung Rußpartikel auf der Plattenoberfläche verbliaben sind. Aus diesem Grund wurde die Asphaltplatte einer »geflammten« Asphaltplatte zur Hälfte mit einer Drahtbürste nachgearbeitet. Wider Erwarten ließen sich kaum noch Partikel von der Oberflä-

<table>
<thead>
<tr>
<th>Tabelle 2: Mechanische Verfahren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearbeitungsart:</td>
</tr>
<tr>
<td>- Bearing mit Drahtbürste</td>
</tr>
<tr>
<td>* Manuelle Bearbeitung</td>
</tr>
<tr>
<td>* Oberflächentemperaturen der Asphaltplatten variiert (22°C, 12°C, -12°C)</td>
</tr>
<tr>
<td>* Bearbeitung mit rotierender Drahtbürste (2000 U/min)</td>
</tr>
<tr>
<td>* Oberflächentemperatur der Asphaltplatte 22°C</td>
</tr>
<tr>
<td>Bearbeitung mit Flammstrahler ('Flammen')</td>
</tr>
<tr>
<td>* Brenngas: Acetylen-Sauerstoff-Flamme</td>
</tr>
<tr>
<td>* Vorschubgeschwindigkeiten 4 und 6 Sekunden, stechend und schleppend</td>
</tr>
<tr>
<td>Trockeneis-Strahltechnik</td>
</tr>
<tr>
<td>* Trockeneis als feste Zusatzform von Kohlendioxid (-78°C)</td>
</tr>
<tr>
<td>* Strahldruck: 15 bar</td>
</tr>
<tr>
<td>* Strahlzeit: 15 und 30 Sekunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabelle 3: Versuche mit hochenergetischen elektromagnetischen Wellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearbeitungsart:</td>
</tr>
<tr>
<td>- Bestrahlung mit UV-Licht</td>
</tr>
<tr>
<td>* Wellenlänge = 254 nm</td>
</tr>
<tr>
<td>* 5 Stunden Bestrahlung pro Tag</td>
</tr>
<tr>
<td>- SRT-Messung wöchentlich nach vorherigem Abbürsten</td>
</tr>
<tr>
<td>Bearbeitung mit Lasern: Niedrige-YAG-Laser (Nd:YAG)</td>
</tr>
<tr>
<td>- Maximale Pulsenergie: E_p = 300 mJ</td>
</tr>
<tr>
<td>- Laserwellenlänge: λ = 1,06 μm</td>
</tr>
<tr>
<td>- Pulsdauer: τ_p = 6 ns</td>
</tr>
<tr>
<td>- Pulsoffrequence: f_p = 20 Hz</td>
</tr>
<tr>
<td>CO_2-TEA-Laser</td>
</tr>
<tr>
<td>- Maximale Pulsenergie: E_p = 12 J</td>
</tr>
<tr>
<td>- Laserwellenlange: λ = 10,6 μm</td>
</tr>
<tr>
<td>- Pulsdauer: τ_p = 5 ns</td>
</tr>
<tr>
<td>- Pulsoffrequence: f_p = 20 - 25 Hz</td>
</tr>
<tr>
<td>Bearbeitung mit Diodenlaser-Sack (Stapelpack von 10 Laserdioden)</td>
</tr>
<tr>
<td>- mit verwandtem Diodenaseraarray nur kontinuierlicher Betrieb möglich</td>
</tr>
<tr>
<td>- Laserleistung im kontinuierlichen Betrieb: P_{max} = 300 W</td>
</tr>
<tr>
<td>- Laserwellenlänge: λ = 808 nm</td>
</tr>
</tbody>
</table>

asphalt 4/98
29
Einbau

che lösen. Anschließende SRT-Mesungen zeigten, daß ein ähnlicher Ef-
fekt wie beim reinen mechanischen Bürsten auftritt. Die zunächst verbes-
serte Griffigkeit, die durch das Flä-
men erzielt wurde (SRT-Wert 88), ver-
schlechterte sich durch das Bürsten
auf einen Wert von 67 und erreichte
damit nahezu den ursprünglichen Aus-
gangswert (Abbildung 6).

Die Bearbeitung der Asphaltplatten
mit dem Trockeneis-Strahlverfahren
zeigte tendenziell eine Verbesserung
der Griffigkeit. (Die Oberflächenstruk-
tur der Asphaltplatten konnte in einer
fotografischen Darstellung nicht wie-
dergeben werden, so daß an dieser
Stelle auf eine Abbildung verzichtet

Abbildung 1: Laservorrichtung zur Bearbeitung einer
Asphaltplatte

Abbildung 2: Mechanische Bearbeitung der Asphalt-
platten mittels Drahtbürste (manuell)

Abbildung 5: SRT-Werte vor und nach der Bearbeitung
der Asphaltplatten mittels Flammstrahler

Abbildung 3: Vergleich einer unbearbeiteten Asphalt-
platte (B) mit einer Platte, die mittels rotierender Draht-
bürsten bearbeitet wurde (A)

Abbildung 4: Vergleich einer unbearbeiteten Asphalt-
platte (B) mit einer Platte, die geflämmt wurde (A)

Abbildung 6: Veränderung der Griffigkeit nach dem Flä-
men und anschließendem Bürsten
wurde.) Die SRT-Werte von anfangs 52 konnten bis auf einen Wert von 74 verbessert werden.

Ergebnisse mittels elektromagnetischer Wellen

Nach Abschluß der durchgeführten Tastversuche wurden die bearbeiten-

den Bereiche der Asphaltplatten abgetrennt, extrahiert und am Bitumen der Erweichungspunkt Ring und Kugel bestimmt. Auf diese Weise sollte vor weiterführenden Überlegungen die Frage geklärt werden, ob eine Veränderung des Bitumens durch die aufgeführten Verfahren Flammen, Trocken- und Strahlverfahren und Lasereinsatz eintritt.

Schlußfolgerung

Abbildung 7: Bearbeitung einer Asphaltplatte mit Nd-YAG-Laser

Abbildung 8: SRT-Werte vor und nach der Bearbeitung der Asphaltplatten mittels Laser

Abbildung 9: Untersuchung des Bitumens nach der Bearbeitung der Asphaltoberfläche (Erweichungspunkt Ring und Kugel)
konnte kein Bindemittelabtrag erreicht werden.
Mittels Flämmen und Trockeneis-
Strahlverfahren konnten gute Ergeb-
nisse hinsichtlich der Verbesserung
der Anfangsgriffigkeit erzielt werden.
Beide Verfahren können prinzipiell als
Methode zur Erhöhung der Anfangs-
griffigkeit in Betracht gezogen werden.
Die Verfahrensparameter und Rand-
bedingungen müßten jedoch in einem
Untersuchungsprogramm festgelegt
werden.

Im Rahmen der durchgeführten Vor-
versuche mittels Laser konnte die
Mineralstoffoberfläche erstmals völlig
freigelegt werden, ohne dabei den Ver-
bund der Körner in der Asphalt-
oberfläche zu stören. Dadurch konnte
neben der Verbesserung der Anfangs-
griffigkeit auch ein Aufhebungseffekt
erzielt werden. Der Grad der Freilei-
gung ist durch die Bearbeitungszeit
und Optimierung der Verfahrens-
parameter steuerbar. Die Vorversuche
haben gezeigt, daß die Laser-
strahlung, d. h. hochenergetische elekt-
romagnetische Wellen, zur Erhöhung
der Anfangsgriffigkeit wirksam ist.

Ausblick

Der Abtrag des dünnen Bitumen-
films von der Mineralstoffoberfläche
neuer Deckschichten zur Gewährlei-
stung einer ausreichenden Anfangs-
griffigkeit ist im Asphaltstraßenbau ein
bisher noch nicht gelöstes Problem.
Die Pilotstudie konnte nur einen klei-
nen Beitrag liefern, neue Möglichkei-
ten zur Entwicklung dafür geeigneter
Verfahren zu erörtern. Mit Hilfe der La-
sertechnik ist die Entwicklung eines
neuen Verfahrens zur Erhöhung der
Anfangsgriffigkeit denkbar. Eine Um-
setzbarkeit in die Praxis ist vorläufig
nicht möglich, da sich die erreichbaren
Flächenleistung als zu gering erwie-
sen hat. Zukunftsoorientierend sollte ein
möglicher Lasereinsatz jedoch weiter
verfolgt werden, da diesbezüglich die
Entwicklung in vielen technischen Be-
reichen stark vorangetrieben wird.

Derzeit wird in den Fachgremien
diskutiert, Anforderungen an die Grif-
figkeit bei Verkehrsumlagen in den
entsprechenden Regelwerken zu ver-
ankern. Im Hinblick auf diese Entwick-
lung erscheint es sinnvoll, praktizierte
Verfahren hinsichtlich einer möglichen
Optimierung zu untersuchen und
Wege für neue Verfahren zur Erhö-
hung der Anfangsgriffigkeit zu öffnen.

Literatur

[1] Dames, J.; Lindner, J.; Sulten, P.;
Hufschmidt, H.-J.; Langfristige Beobach-
tungen des Griffverhaltens von
Versuchsstrecken, Forschung StraBen-
bau und Straßenverkehrstechnik, Heft
481, Bonn 1986
[2] Forschungsgesellschaft für StraBen-
wesen (FGSV), Merkblatt für den Bau grif-
giger Asphaltdeckschichten, Köln 1994
Griffigkeit von Fahrbahnoberflächen –
Griffigkeit und Verkehrssicherheit, Straße
und Autobahn, Heft 3/1995
[4] Ha, T.B.; Rahimian, I., Über den Ein-
fluß der Erdölharze auf das Altersver-
[5] Neumann, H.-J., Was ist Bitumen, Bi-
tumen, Heft 4/1995
[6] Schulze, K.-H.; Dames, J.; Schuster,
F.O.; Sulten, P.; Lindner, J., Erhöhung der
Anfangsgriffigkeit von Asphaltbetondeck-
schichten, Forschung Straßenbau und
Straßenverkehrstechnik, Heft 248, Bonn
1978
[7] Schulze, K.-H.; Dames, S.; Lange, H.,
Untersuchungen über die Verkehrssicher-
heit bei Nässe, Schriftentafeln Straßen-
bau und Straßenverkehrstechnik des Bundes-
ministeriums für Verkehr, Heft 189, Bonn
1975

Anschrift der Verfasser:
Dr.-Ing. Georg Suß
Dipl.-Ing. Ulrike Karolewski
Technische Universität Darmstadt
Versuchsanstalt für Straßenwesen
Petersenstraße 30
64287 Darmstadt

Dieses Forschungsvorhaben wurde mit
mitteln des Bundesministeriums für Wirt-
schaft durch die AiF unter der Nummer
10711 gefördert.

Innovative initial skin resistance of asphalt wearing courses

It is possible, immediately after laying a new asphalt wearing course or
carrying out maintenance, that the binder film on the chipping surface
prevents the rough microtexture needed for skid-resistance from developing
fully. In the course of a research project sponsored by the Federation of
Industrial Research Associations (AiF) at the Technical University Darm-
stadt, the subject of initial skin resistance has been taken up. In addition to
a literature review of currently used methods for increasing initial skin
resistance, a pilot study explored new possibilities of developing suitable
methods.

The pilot study found that a removal of the bitumen/asphalt mortar film
from the aggregate surface was scarcely possible by mechanical means.
Flame and dry ice treatment, however, gave good results regarding the
improvement in initial skin resistance. The parameters and background of
each process, however, will have to be laid down in a new research
programme.

Preliminary trials carried out with lasers, i.e., high-energy electromagnetic
waves, fully freed the aggregate surfaces without affecting the cohesion of
the grains in the asphalt surface. In addition to improving initial skin
resistance, this also provided a lightening effect. The degree of binder
removal can be controlled by altering operating times and optimising
process parameters. At present it is not possible to apply this in practice
since the extent of the area treated proved to be insufficient.

Automatische Bitumenprüfgeräte

- normgerechte DIN/ASTM Automatik-Tests: Brechpunkt, Duktilität, Erweichungspunkt, Flammung u.v.a.m.
- starten + vergessen: Versuchsende mit direkt ablesbarem Ergebnis, Dokumentation über Drucker oder PC.
- passend für jedes Labor: kompakt, meist mit integrierter Kühlung/Heizung; leise, energie- und wassersparend.

PROSPEKT ANFORDERN: HIGH-TECH BITumen TEST EQUIPMENT

*E-Mail: sales@petrotest.com *Homepage: http://www.petrotest.com *Fax 03370 856 555
Petrotest Instruments GmbH & Co KG - Ludwig-Erhard-Ring 13 - D 15827 Dahlewitz - *Tel 03370 856 300